

PHYTOCHEMISTRY

Phytochemistry 63 (2003) 427-431

www.elsevier.com/locate/phytochem

Two biflavonoids from *Ouratea flava* stem bark

Joséphine Ngo Mbing^a, Dieudonné Emmanuel Pegnyemb^{b,*}, Raphael Ghogomu Tih^b, Beibam Lucas Sondengam^b, Alain Blond^c, Bernard Bodo^c

^aCentre de Recherches en Plantes Médicinales et Médecine Traditionnelle, I.M.P.M., B.P. 6163, Yaoundé, Cameroon

^bDepartment of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon

^cLaboratoire de Chimie des Substances Naturelles, ESA 8041 CNRS, Muséum National d'Histoire Naturelle, 63 Rue Buffon 75005 Paris, France

Accepted 3 March 2003

Abstract

In a chemical investigation on the stem bark of *Ouratea flava*, two biflavonoids: 1-[3-(2,4-dihydroxy-benzoyl)-4,5,6-trihydroxy-2-(4-hydroxy-phenyl)-benzofuran-7-yl] -3-(4-hydroxy-phenyl) -propenone (flavumone A) and 3-(2,4-dihydroxy-benzoyl)-4-hydroxy-2,7-bis-(4-hydroxy-phenyl) -7,8- dihydro-furo[2,3-f]chromen-9-on (flavumone B) were isolated along with five known flavonoids. Their structures were established by various analyses including 2D-NMR spectroscopy.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Ouratea flava; Ochnaceae; Stem bark; Biflavonoids; Flavumones A and B; NMR data

1. Introduction

The genus *Ouratea* comprises 300 tropical species occuring mainly in South America (Heywood, 1978), and its extracts are used in folk medicine in cases of rheumatic and gastric distress. Previous investigations on the chemical composition of this genus have led to the isolation of several flavonoids (Velandia et al., 1998) and biflavonoids from the leaves (Moreira et al., 1999; Felicio et al., 2001) and from stem bark (Moreira et al., 1994). Some of biflavonoids isolated from Ouratea spectabilis have shown an inhibitory effect against lens aldose reductase. The increased activity of this enzyme has been implicated in the pathogenesis of many diabetic complications, such as cataract, retinopathy, and neuropathy (Felicio et al., 1995). In the course of our phytochemical investigations on Cameroonian medicinal plants, we studied here the constituents of Ouratea flava. In this paper, we report the isolation and structural elucidation of two new biflavonoids: flavumones A (2) and B (3).

2. Results and discussion

The air-dried stem bark of *Ouratea flava* was extracted with methanol. Constituents were separated by the

combination of column chromatography on silica gel and Sephadex LH-20 gel. Final purification gave seven compounds, five of them were identified as calodenins B (1) and C (Messanga et al., 1994, 1998), lophirone A (Ghogomu et al., 1987), methoxyirilone (Messanga et al., 1998) and 4',5-dimethoxy-6,7-methylenedioxyiso-flavone (El-Emary et al., 1980).

RO
$$A_1$$
 OR A_2 OR A_2 OR A_3 OR A_4 OR A_2 OR A_2 OR A_2 OR A_3 OR A_4 OR A_5 OR A_5 OR A_5 OR A_6 OR A_7 OR A_8 OR

Compound **2**, named flavumone A was obtained as yellow crystals. In the CIMS of **2**, the pseudomolecular ion $[M+H]^+$ occurred at m/z 541 in agreement with the molecular formula $C_{30}H_{20}O_{10}$, indicating one oxygen atom more than that of calodenin B (1). The 1H and ^{13}C NMR spectra signals showed a close analogy with those of **1**. The presence in the spectrum of **2** of two carbonyl carbon atoms (δc 190.6 and 195.7), two conjugated carbon–carbon bonds (δc 145.1, 123.0, 153.5 and 113.7), two *para*-disubstituted and one *ortho*, *para*-trisub-

^{*} Corresponding author. Tel.: +237-23-5388; fax: +237-7804176. *E-mail address*: epegny@uycdc.uninet.cm (D.E. Pegnyemb).

stituted aromatic rings as in the structure of 1 was evident. The main difference between ^{13}C NMR spectra of the two compounds, was the presence of a quaternary sp² carbon bearing an oxygen atom at δc 155.1 in the spectrum of 2, instead of a tertiary sp² carbon at δc 99.7 in the spectrum of 1. The absence of a singlet at δ_H 6.28 in the 1H NMR spectrum of flavumone A suggested that 2 was a derivative of 1, with an hydroxy group on the B_1 -aromatic ring.

Structure **2** was confirmed from the analysis of its HMBC spectrum (acetone- d_6). The lower field carbonyl carbon signal at δ c190.6 was correlated with protons at δ H 8.29 (H- α 1) and 7.94 (H- β 1). The carbon atom at δ c 145.1 was correlated to the protons of the *para*-disubstituted aromatic A₁-ring (7.74 ppm) forming a *para*-hydroxydehydrocinnamoyl group. The carbonyl carbon atom at δ c 195.7 (c₂) showed ³J correlation with the H-6 proton (7.76 ppm) at the aromatic B₂-ring and the carbon at 153.2 ppm (β 2) was correlated to the aromatic protons H-2', δ ' (7.63 ppm) of the *para*-disubstituted aromatic A₂-ring.

The angular position of the *para*-hydroxy-dehydrocinnamoyl group linked to the aromatic B_1 -ring was determined after analysing of HMBC spectrum of 2 dissolved in DMSO- d_6 . In this spectrum, the phenolic protons of B_1 -ring appeared clearly and gave significant long-range correlations. The quaternary sp² carbon atom at δ c 102.6 (C-1', B_1 -ring) which is linked to cinnamoyl group, was correlated only with the chelated phenolic hydroxyl (δ_H 13.37) whereas cross-peaks were observed between the signal of the sp² carbon at δ c 155.1 and both phenolic hydroxyls.

Complete acetylation of **2** with acetic anhydride/pyridine afforded a hepta-acetate derivative **4** that analysed for $C_{44}H_{34}O_{17}$ (CIMS: $[M+H]^+$ at m/z 835) indicative of seven phenolic hydroxyls as expected. Based on the above evidence leads to structure **2** for flavumone A.

Compound 3 named flavumone B was isolated as an amorphous yellow solid. Its molecular formula was determined as C₃₀H₂₀O₉ by analysis of its higher resolution mass spectrum (m/z 524.0968). The IR spectrum of 3 showed absorption bands for a conjugated and Hbonded carbonyl group ($\nu_{\rm max}$ 1649 cm⁻¹), an aromatic ring (ν_{max} 1600, 1570, 1560, 1515 cm⁻¹) and a hydroxyl group (v_{max} 3370 and 3320 cm⁻¹). Peracetylation (Ac_2O/Py) of 3 gave an amorphous solid 5 $(C_{40}H_{30}O_{14},$ [M+H]⁺ 735), the ¹H NMR spectrum of which had five sharp singlets at δ 2.31, 2.29, 2.22, 2.19 and 2.18 (each 3H) assigned to five acetyl groups. Since IR spectrum of 5 had no residual OH absorption bands, it was deduced that 3 had five hydroxyl groups. The ¹H NMR spectrum of 3 showed twelve aromatic protons and three protons of sp³ type carbon atoms. From detailed analysis of ¹H-¹H COSY NMR, they were distributed into two para-substituted aromatic, one ortho, para-trisubstituted, one pentasubstituted aromatic rings, whereas the aliphatic protons formed an ABX spin system at 2.78 (dd, J = 17.4; 2.8 Hz), 3.15 (dd, J = 17.4; 13.0 Hz) and 5.55 (dd, J = 13.0; 2.8 Hz).

The 13 C NMR spectrum on the other hand, showed 30 carbon signals including signals for two carbonyl groups (δ c 188.2 and 197.1), 14 quaternary sp² carbons with eight bearing an oxygen atom, eight tertiary sp² carbons and three sp³ carbons (Table 2).

The HMBC spectrum of 3 additionally indicated the following significant C-H connectivities through two or three bonds, between the aliphatic carbon (β_1 , δc 80.9) and the two protons at 2,6-position of ring A_1 (δ_H 7.44), between the carbon atom at 154.8 ppm with protons at 2,6-position of ring A₂ (δ_H 7.60), carbonyl carbon c₂ (δc 197.1) showed correlation with the aromatic proton H-6' on B_2 -ring (δ_H 7.41). However an ambiguity remained concerning the respective position on the B₁-ring of the C-ring and its unique proton, leading either to an angular or linear total structure. This problem was solved by analysing the ¹H NMR spectrum of 3 dissolved in DMSO- d_6 . In this spectrum the five phenolic protons of the molecule were clearly depicted among which only one was strongly chelated at 12.56 ppm suggesting that the C-ring had an angular orientation in 3. Based on the above evidence, structure 3 is thus proposed for flavumone B.

3. Experimental

3.1. General

IR spectra were obtained using KBr discs. NMR 1 H, 400 MHz and 13 C, 100 MHz spectra were performed in Me₂CO- d_6 solution on a bruker WM 400 instrument using TMS as internal standard. For the HMBC spectra, the delay was 70 ms ($J_{\rm CH} \approx 7$ Hz).

3.2. Plant material

The stem bark of *Ouratea flava*, Schum and Thon. was collected in Eloumdem mount (Yaounde, Center province of Cameroon) in July 2000. A voucher specimen (N° 27056/SRF/CAM) is deposited at the National Herbarium in Yaounde, Cameroon.

3.3. Extraction and isolation

Air-dried stem bark of *O. flava* (2.5 kg) was extracted mechanically for 48 h with MeOH at room temperature and afterwards filtered and concentrated under vacuum. The crude MeOH extract (120 g) was first subjected to column chromatography on silica gel and elution with CH₂Cl₂/MeOH mixture of increasing polarity to give six fractions (OU₁ to OU₆) on the basis of TLC com-

position. Fraction OU₂ (9.6 g) was subjected to repeated CC on silica gel eluted with CH₂Cl₂/MeOH (50/1) to yield methoxyirilone (100 mg) and 4′,5-dimethoxy-6,7-methylenedioxyisoflavone (70 mg). Fraction OU₃ (6.5 g) was first chromatographed on a silica gel column (CH₂Cl₂/MeOH:20/1) to give crude fractions OU₃C and OU₃F which were further purified using the same procedure as before to yield pure lophirone A (100 mg) and calodenin C (25 mg). Fraction OU₄ (2.3 g) was purified by CC with the solvent mixture CH₂Cl₂/MeOH (10/1). Further purification was realised by gel permeation chromatography over Sephadex LH-20 with MeOH to give flavumone A (2) (20 mg). Fraction OU₅ (1.7 g) was first chromatographed over

silica gel (CH₂Cl₂/MeOH 15/1) yielding calodenin B (1) (30 mg) and crude flavumone B which was further purified over Sephadex LH-20 (MeOH) to yield pure flavumone B (3) (15 mg).

3.4. Flavumone A (2), $C_{30}H_{20}O_{10}$

Yellow crystals, mp 240–241° (Me₂CO), CIMS (NH₃) m/z: 558 [M+NH₄]⁺, 541 [M+H]⁺. EIMS (110°, 70 eV) m/z (%): 540 (13, M⁺·), 310 (30), 284 (12), 183 (29), 165 (75), 137 (20), 81 (48), 69 (77), 57 (100). HREIMS m/z: 540.10565 M⁺· (calc. For C₃₀H₂₀O₁₀; 540.47380). ¹H and ¹³C NMR: Tables 1 and 2.

Table 1 ¹H NMR data for compounds **2** and **3** (400 MHz, acetone-*d*₆, TMS)

	2			2 ^a			3			3 ^a		
	δH (ppm)	m	J (Hz)	δH (ppm)	m	J (Hz)	δH (ppm)	m	J (Hz)	δH (ppm)	m	J (Hz)
1A ₁	_			_			_			_		
$2A_1$	7.74	m	8.5	7.67	m	8.5	7.44	m	8.8	7.32	m	8.6
$3A_1$	6.99	m	8.5	6.89	m	8.5	6.89	m	8.8	6.73	m	8.6
$4A_1$	_			_			_			_		
$5A_1$	6.99	m	8.5	6.89	m	8.5	6.89	m	8.8	6.73	m	8.6
$6A_1$	7.74	m	8.5	7.67	m	8.5	7.44	m	8.8	7.32	m	8.6
α_1	8.28	d	15.4	8.17	d	15.4	3.15	dd	17.4; 13.0	3.28	dd	17.4; 13.
							2.78	dd	17.4; 2.8	2.69	dd	17.4; 2.8
β_1	7.93	d	15.4	7.85	d	15.4	5.55	dd	13.0; 2.8	5.47	dd	13.0; 2.8
c_1	_			_			_		,	_		,
$1'B_1$	_			_			_			_		
$2'B_1$	_			_			_			_		
$3'B_1$	_			_			_			_		
$4'B_1$	_			_			_			_		
$5'B_1$	_			_			6.34	S		5.98	S	
$6'B_1$	_			_			0.5 1	5		-	5	
$1A_2$	_			_						_		
$2A_2$	7.63	m	8.5	7.52	m	8.5	7.60	m	8.9	7.42	m	8.8
$3A_2$	6.92	m	8.5	6.86	m	8.5	6.91	m	8.9	6.83	m	8.8
$4A_2$	-	""	0.5	-	""	0.5	-	****	0.7	-	***	0.0
$5A_2$	6.92	m	8.5	6.86	m	8.5	6.91	m	8.9	6.83	m	8.8
$6A_2$	7.63	m	8.5	7.52	m	8.5	7.60	m	8.9	7.42	m	8.8
α_2	7.03 -	m	6.5	-	m	6.5	-	m	0.7	- -	""	0.0
β_2	_			_			_			_		
c ₂	_			_			_			_		
$1'B_2$	_											
$\frac{1}{2}$ $\frac{B_2}{B_2}$	_			_			_					
$3'B_2$	6.40	d	2.3	6.33	d	2.3	6.38	d	2.3	6.30	d	2.3
$4'B_2$	0.40	и	2.3	-	и	2.3	-	и	2.3	0.50	и	2.3
$5'B_2$	6.25	dd	8.8; 2.3	6.31	dd	8.8; 2.3	6.23	dd	8.8; 2.3	6.18	dd	8.8; 2.3
	7.46	aa d	8.8	7.32	aa d	8.8	7.41	aa d	8.8	7.30	aa d	8.8
6′B ₂ OH (2′B ₁)	7.40	и	0.0	13.37		0.0	7.41	и	0.0	7.30 -	и	0.0
OH $(2'B_1)$ OH $(2'B_2)$				12.38	S					12.56		
					S					12.36	S	
OH $(4'B_1)$				11.31	S						S	
OH $(4'B_2)$				10.85	S					10.58	S	
OH $(4A_1)$				9.20	S					9.60	S	
OH (4A ₂)				9.91	S					9.99	S	
OH $(3'B_2)$				9.95	S							

Acetone- d_6 .

a DMSO-d₆.

Table 2 13 C NMR data and HMBC correlations for compound 2 and 3 (100 MHz, acetone- d_6 , TMS)

	2		3				
	δC (ppm)	HMBC (protons)	δC (ppm)	HMBC (protons)			
$1A_1$	125.7	2,6A ₁	131.0	α ₁ , β ₁ , 3,5A ₁			
$2A_1$	131.6	$3A_1$	129.1	β_1 , $6A_1$			
$3A_1$	116.1	$2A_1$	116.1	$5A_1$			
$4A_1$	161.1	$3,5A_1$	158.6	$2,6A_1$			
$5A_1$	116.1	$6A_1$	116.1	$3A_1$			
$6A_1$	131.6	$5A_1$	129.1	β_1 , $2A_1$			
α_1	123.0	eta_1	45.0	=			
β_1	145.1	α_1 ; 2,6A ₁	80.9	$\alpha_1; 2,6A_1$			
c_1	190.6	α_1, β_1	188.2	$\alpha_1, \beta_1, 5'B_1$			
$1'B_1$	101.5	=	115.4	α_1 , $5'B_1$			
$2'B_1$	158.7	_	156.3	_			
$3'\mathbf{B}_1$	115.3	_	103.3	$5'B_1$			
$4'B_1$	167.0	_	163.5	$5'B_1$			
$5'\mathbf{B}_1$	154.9	_	99.4	_			
$6'\mathbf{B}_1$	155.0	_	157.7	$5'B_1$			
$1A_2$	121.7	$2,6A_2$	121.7	$3,5A_2$			
$2A_2$	129.2	$3A_2$	129.6	$6A_2$			
$3A_2$	116.7	$2A_2$	116.6	$5A_2$			
$4A_2$	159.5	$3,5A_2$	159.5	$2,6A_2$			
$5A_2$	116.7	$6A_2$	116.6	$3A_2$			
$6A_2$	129.2	$5A_2$	129.6	$2A_2$			
α_2	113.6	_	113.2	_			
β_2	153.2	$2,6A_2$	154.8	$2,6A_2$			
c_2	195.7	$6'B_2$	197.1	$6'B_2$			
$1'\mathbf{B}_2$	115.9	$5',6'B_2$	116.1	$3',5'B_2$			
$2'B_2$	166.2	$3',6'B_2$	166.3	$3',6'B_2$			
$3'B_2$	103.3	$5'B_2$	103.4	$6'B_2$			
$4'B_2$	166.3	$3',5',6'B_2$	166.3	$3',6'B_2$			
$5'B_2$	109.1	$3',6'B_2$	109.1	$3'B_2$			
$6'B_2$	136.7	$5'B_2$	136.7	_			

3.5. Flavumone A heptaacetate (4)

Flavumone A (10 mg) was dissolved in dry pyridine (2 ml) in a 5 ml round bottomed flask and Ac_2O (2 ml) and left in the oven at 50° for 5 h, after which the solvent was removed under vacuum and the powder obtained purified over Sephadex LH-20 with MeOH as eluent to give flavumone A heptaacetate (4), $C_{44}H_{34}O_{17}$ (5 mg). CIMS (NH₃) m/z 852 [M+NH₄]⁺, 835 [M+H]⁺, NMR ¹H (400 MHz) δ (ppm) : 7.96 (2H, m, H-2,6A₁), 7.36 (2H, m, H-3,5A₁), 7.75 (1H, d, J=15.7 Hz, H- α ₁), 7.93 (1H, d, J=15.7 Hz, H- β ₁), 7.84 (2H, m, H-2,6A₂), 7.28 (2H, m, H-3,5A₂), 7.13 (1H, d, J=2.4 Hz, H-3′B₂), 6.99 (1H, dd, J=8.8 ; 2.4 Hz, H-5′B₂), 7.31 (1H, d, J=8.8 Hz, H-6′B₂), 2.41 (3H, s, OAc), 2.39 (3H, s, OAc), 2.27 (3H, s, OAc), 2.22 (3H, s, OAc), 2.21 (3H, s, OAc), 2.20 (3H, s, OAc), 2.18 (3H, s, OAc).

3.6. Flavumone B(3), $C_{30}H_{20}O_9$

Amorphous yellow solid. $[\alpha]_D^{25} = +29^\circ$ (MeOH, c 0.5), CIMS (NH₃) m/z 542 $[M+NH_4]^+$, 525 $[M+H]^+$. TOF-MS m/z (%): 525.1 (100, $[M+H]^+$), 513.2 (32),

483.2 (42), 411.4 (13), 375.2 (34), 369.4 (19), 288.3 (22), 270.2 (15), 197.1 (36), 149.0 (14), 139.1 (19), 121.0 (15), 116.1 (11). HREIMS m/z: 524.0968 M⁺ (calc. for $C_{30}H_{20}O_9$, 524.1106). ¹H and ¹³C NMR: Tables 1 and 2.

3.7. Flavumone B pentaacetate (5)

The same procedure as for 2 was applied to 3 (10 mg) and its pentaacetate **5**, $C_{40}H_{30}O_{14}$ (5 mg) was obtained. CIMS (NH₃) m/z 752 [M+NH₄]⁺, 735 [M+H]⁺. NMR ¹H (400 MHz) δ (ppm) : 7.71 (2H, m, J= 8.8 Hz, H-2,6A₁), 7.05 (2H, m, J= 8.8 Hz, H-3,5A₁), 3.16 (1H, dd, J= 17.4 ; 13.1Hz, H- α ₁), 2.73 (1H, dd, J= 17.4 ; 2.8 Hz, H- α ₁), 5.58 (1H, dd, J= 13.1 ; 2.8 Hz, H- β ₁), 6.52 (1H, s, H-5'B₁), 7.74 (2H, m, J= 8.9 Hz, H-2,6A₂), 7.14 (2H, m, J= 8.9 Hz, H-3,5A₂), 6.92 (1H, d, d) = 2.3 Hz, H-3'B₂), 6.82 (1H, dd, d) = 8.8 ; 2.3 Hz, H-5'B₂), 7.81 (1H, d, d) = 8.8 Hz, H-6'B₂), 2.31 (3H, s, OAc), 2.29 (3H, s, OAc), 2.22 (3H, s, OAc), 2.19 (3H, s, OAc), 2.18 (3H, s, OAc).

Acknowledgements

We are grateful to M. Koufani (National Herbarium, Cameroon) for the harvesting and identification of plant material, and to Dr. J.P. Brouard (Laboratoire de Chimie du Muséum-CNRS, France) for mass spectra. We are also indebted to the University of Yaounde I Grants Committee and French Ministère de l'Education Nationale (DAGIC) for financial assistance. This research was supported by the International Foundation for Science (IFS), Stockholm, Sweden, and the Organisation for the Prohibition of Chemical Weapons (OPCW), The Hague, The Netherlands, through a grant to Dr D.E. Pegnyemb N° F/3330-1.

References

El-Emary, N.A., Kobayashi, Y., Ogihara, Y., 1980. Two isoflavonoids from the fresh bulbs of *Iris ringitana*. Phytochemistry 19, 1878–1879.

Felicio, J.D., Gonçalez, E., Braggio, M.M., Costantino, L., Albasini, A., Lins, A.P., 1995. Inhibition of lens aldose reductase by biflavones from *Ouratea spectabilis*. Planta Med. 61, 217–220.

Felicio, J.D., Rossi, M.H., Park, H.R., Gonçalez, E., Braggio, M.M., David, J.M., Cordeiro, I., 2001. Biflavonoids from *Ouratea multi-flora*. Fitoterapia 72, 453–455.

Ghogomu, R., Sondengam, B.L., Martin, M.T., Bodo, B., 1987. Lophirone A, a biflavonoid with unusual skeleton from *Lophira lanceolata*. Tetrahedron Lett. 28, 2967–2968.

Heywood, V.H., 1978. Flowering plants of the World. Oxford University Press, London, pp. 84.

Messanga, B.B., Ghogomu Tih, R., Sondengam, B.L., Martin, M.T., Bodo, B., 1994. Biflavonoids from *Ochna calodendron*. Phytochemistry 35, 791–794.

Messanga, B.B., Ghogomu, R., Sondengam, B.L., Martin, M.T.,

- Blond, A., Brouard, J.P., Bodo, B., 1998. Calodenin C: a new Guibourtinidol-(4α 8)-afzelechin from *Ochna calodendron*. Planta Medica 64, 760–761.
- Moreira, I.C., Sobrinho, D.C., De Carvalho, M.G., Braz-Filho, R., 1994. Isoflavanone dimers hexaspermone A, B and C from *Ouratea hexasperma*. Phytochemistry 35, 1567–1572.
- Moreira, I.C., De Carvalho, M.G., Bastos, A.B.F.O., Braz-Filho, R., 1999. A flavone dimer from *Ouratea hexasperma*. Phytochemistry 51, 833–838.
- Velandia, J.R., De Carvalho, M.G., Braz-Filho, R., 1998. Novel trichloro- and tetrachloroisoflavone isolated from *Ouratea semiserrata*. Nat. Prod. Lett. 12, 191–198.